FULL PAPER

Periplocain A, a New Naphthalene Derivative from *Periploca aphylla* Growing in Saudi Arabia

by Nawal M. Al Musayeib^{*a}), Shaza M. Al-Massarani^a), Musarat Amina^a), Rabab A. El Dib^a), Gamal A. Mohamed^b)^c), and Sabrin R. M. Ibrahim^d)

^a) Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (phone: 966-112282584; fax: 966-112282584; e-mail: nawal.pharmacy@gmail.com, nalmusayeib@ksu.edu.sa)
^b) Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah

21589, Saudi Arabia

^c) Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt ^d) Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 30078, Saudi Arabia

Periplocain A (2), a new naphthalene derivative together with four known compounds: 2-ethylhexyl benzoate (1), quercetin-3-O- α -L-rhamnopyranoside (3), quercetin-3-O- β -D-glucopyranoside (4), and quercetin-3-(6-O- α -L-rhamnopyranosyl- β -D-glucopyranoside) (5) were isolated from the AcOEt fraction of the aerial parts of *Periploca aphylla* (Asclepiadaceae). Their structures were established by multiple spectroscopic methods in addition to HR-ESI-MS and by comparison with literature data.

Keywords: Periploca aphylla, Quercetin, Asclepiadaceae, Periplocain A, Naphthalene derivatives.

Introduction

The genus *Periploca* (family Asclepiadaceae) includes about 12 species. In Saudi Arabia, *P. somaliensis*, *P. aphylla*, *P. brevicoronata*, and *P. visciformis* are the most common species [1]. *Periploca aphylla* DCNE (suwwas) is an erect milky branched shrub, widely distributed in Najd and South Hijaz regions of Saudi Arabia [2]. It is used for treatment of urticaria, cerebral fever, tumors, and swellings [3 - 5]. The decoction of its bark is used against fever and constipation [6]. It possesses wide range of biological activities as cytotoxic, antioxidant [7], antibacterial [8][9], antiprotozoal, hepatoprotective [10], phytotoxic [11], α -glucosidase inhibitory [12], antidiarrheal, and laxative [1]. Earlier investigations of *P. aphylla* resulted in the isolation of norterpenoids, triterpenes, sterols [12 – 14], bisflavan-3-ols, xanthone, and lignans [13]. This study reports the isolation and structural elucidation of a new naphthalene derivative, periplocain A (**2**), along with four known compounds. Their structures were assigned by extensive spectroscopic methods as well as by comparison with the literature (*Fig. 1*).

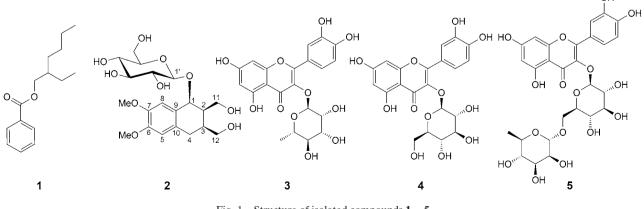


Fig. 1. Structure of isolated compounds 1 - 5.

OH

Results and Discussion

Compound 2 was obtained as a white amorphous powder. Its molecular formula was deduced as $C_{20}H_{30}O_{10}$ by HR-ESI-MS pseudomolecular ion peak at m/z 431.1915 $[M+H]^+$ (calcd for C₂₀H₃₁O₁₀, 431.1917). It had UV absorptions at 242 and 281 nm. The IR spectrum showed absorptions for OH group (3415 cm⁻¹) and aromatic C-H (1595 and 1515 cm⁻¹) [15]. The ¹³C-, DEPT-, and HSQC-NMR spectra of 2 (Table) revealed the presence of 20 Catom signals representing two Me groups, four CH₂ groups, 10 CH groups, and four non-protonated C-atoms (aromatic ring 6,7,9,10-tetrasubstituted). Inspection of the ¹³C-NMR and HSQC spectroscopic data for **2** allowed all H-atoms to be assigned to their respective C-atoms. The ¹H-NMR spectrum showed two aromatic H-atoms *singlets* at $\delta(H)$ 6.52 H–C(5)and 6.55 H–C(8), an O-bearing CH group at $\delta(H)$ 4.66 (d, J = 5.5, H–C(1)), $\delta(H)$ 4.66 (d, J = 5.5, H–C(1)), two CH groups δ (H) 2.23 (ddd, J = 7.1, 6.5, 5.5, 3.4, H–C(2)) and 2.62 – 2.66 (m, H–C(3)), and a CH₂ group at δ (H) 2.87 (*dd*, $J = 13.0, 5.3, H-C(4\alpha)$) and 2.46 (*dd*, J = 13.0, 3.9, H–C(4 β)), correlated with the Catom signals at $\delta(C)$ 106.7, 103.1, 81.9, 52.4, 41.6, and 32.8, respectively, in the HSQC spectrum indicating that 2 was 1,2,3,4-tetrahydronaphthalen-1-ol derivative. This was established by the observed ¹H,¹H-COSY cross peaks and further confirmed by the HMBCs of H-C(1) to C(8), H-C(2) to C(3) and C(9), H-C(3) to C(1) and C(10), H-C(4) to C(5) and C(9), H–C(5) to C(4), C(6), and C(10), and H-C(8) to C(1), C(7), C(9), and C(10) (Fig. 2). Moreover, resonances for two MeO groups at $\delta(H)$ 3.75 (s, 6 H, 6, 7-MeO) were observed in the ¹H-NMR spectrum. They correlated with the C-atom signals at $\delta(C)$ 56.3 (6-MeO) and 55.9 (7-MeO) in the HSQC spectrum. Their connectivities at C(6) and C(7) were established by their HMBC cross peaks to the C-atoms at $\delta(C)$ 152.5 C (6) and 147.7 C(7). In addition, two oxymethylene groups at $\delta(H)$ 3.70 (*dd*, J = 11.9, 6.5, H_{α} -C(11)), 3.50 (*dd*, $J = 11.9, 3.4, H_{B}-C(11)), 3.92 (dd, J = 12.3, 6.7, H_{a}-C(11))$ C(12)), and 3.60 (*dd*, $J = 12.3, 2.8, H_{\beta}$ -C(12)), correlating with the C-atoms at $\delta(C)$ 58.6 C(11) and 71.8 C(12) in HSQC spectrum were observed. The ¹H, ¹H-COSY correlations of H–C(1) to H–C(11) and H–C(3) to H–C(12) and the HMBC cross peaks of H-C(1) to C(11), H-C(2)and H–C(3) to C(12), and H–C(11) to C(1), C(2), and C(3), and H–C(12) to C(2) and C(4) indicated the attachment of the O-bearing CH_2 groups at C(2) and C(3) of 1,2,3,4-tetrahydronaphthalen-1-ol moiety. Furthermore, an anomeric H-atom signal at $\delta(H)$ 4.85 (d, J = 7.5, 1 H, H– C(1') with a coupling constant characteristic of a β -configuration and additional sugar H-atoms at $\delta(H)$ 3.68 - 3.20 characteristic for a β -glucopyranose moiety were observed in ¹H-NMR spectrum. This was confirmed by the fragment ion peak at 268 $[M - Glu]^+$ in the ESI-MS spectrum. In the HMBC, the cross peaks of H-C(1')to (C(1) (δ (C) 81.9) and H–C(1) to C(1') established the attachment of the glucose moiety at C(1). The small J

Table. NMR spectral data of compound ${\bf 2}~((D_6)DMSO,~700~and~176~MHz)$

Position	$\delta(\mathrm{H}) \;(\mathrm{mult.}, J \;[\mathrm{Hz}])^{\mathrm{a}})$	$\delta(C) \text{ (mult.)}^{a}$	HMBC
1	4.66 (d, J = 5.5)	81.9 CH	1', 8, 11
2	2.23 (dddd, J = 7.1, 6.5, 5.5, 3.4)	52.4 CH	3, 9, 12
3	2.62 - 2.66 (m)	41.6 CH	1, 4, 10, 12
4	2.87 (dd, J = 13.0, 5.3)	32.8 CH ₂	5, 9, 12
	2.46 (dd, J = 13.0, 3.9)		
5	6.52 (s)	106.7 CH	4, 6, 10
6	-	152.5 C	_
7	_	147.7 C	_
8	6.55 (s)	103.1 CH	1, 7, 9, 10
9	_	133.7 C	_
10	_	136.1 C	_
11	$3.70 \ (dd, J = 11.9, 6.5)$	58.6 CH ₂	1, 2, 3
	3.50 (dd, J = 11.9, 3.4)		
12	3.92 (dd, J = 12.3, 6.7)	71.8 CH ₂	2, 4
	3.60 (dd, J = 12.3, 2.8)		
1'	4.85 (d, J = 7.5)	102.8 CH	1
2'	3.18 – 3.22 (<i>m</i>)	74.2 CH	
3'	3.25 – 3.28 (<i>m</i>)	76.4 CH	
4'	3.12 – 3.17 (<i>m</i>)	69.9 CH	
5'	3.02 - 3.05 (m)	77.1 CH	
6'	3.65 - 3.69 (m)	60.9 CH ₂	
	3.45 – 3.48 (<i>m</i>)		
6-MeO	3.75 (s)	56.3 CH ₃	6
7-MeO	3.75 (s)	55.9 CH ₃	7
2'-OH	4.98 (br. s)	_	
3′, 4′-OH	4.92 (br. s)	_	
6'-OH	$4.31 \ (t, J = 4.8)$	6'	-
11-OH	4.74 (t, J = 3.9)	_	_

^a) The assignments were based on ¹H,¹H-COSY, HSQC, and HMBC experiments.

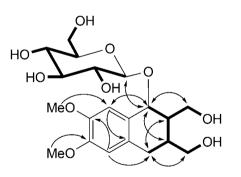


Fig. 2. Some Key ¹H, ¹H COSY (—) and HMBC (H \rightarrow C) correlations of **2**.

values of H–C(1) with H–C(2) and H–C(3) indicated α -orientation of these H-atoms. Furthermore, it was confirmed by the observed NOESY cross peaks of H–C(1) with H–C(2) and H–C(3). On the basis of the above evidences, the structure of **2** was unambiguously elucidated as depicted and named periplocain A.

The known compounds were identified as 2-ethylhexyl benzoate (1) [16 – 18], quercetin-3-O- α -L-rhamnopyranoside (3) [19], quercetin-3-O- β -D-glucopyranoside (4) [20], and quercetin-3-(6-O- α -L-rhamnopyranosyl- β -D-glucopyranoside) (5) [19] by comparing their NMR spectral and physical data with the literature.

This research project was supported by a grant from the 'Research Center of the Female Scientific and Medical Colleges', Deanship of Scientific Research, King Saud University.

Experimental Part

General

Vacuum liquid chromatography (VLC): silica gel 60 (SiO₂; 0.04 - 0.063 mm; 500 g; Merck, Darmstadt, Germany). Column chromatographic separations were performed on silica gel 60 (0.04 - 0.063 mm, Merck) and on Sephadex LH-20 (Merck, Darmstadt, Germany). TLC analyses were conducted on precoated silica gel F_{254} aluminum sheets (*Merck*). Compounds were detected by spraying the sheets with *p*-anisaldehyde/H₂SO₄ reagent followed by heating at 110 °C for 1 – 2 min. Optical rotations: PerkinElmer Model 341 LC polarimeter (PerkinElmer, Waltham, MA, USA). IR Spectra: Shimadzu Infrared-400 spectrophotometer (Shimadzu, Kyoto, Japan). UV Spectra: in MeOH using a PerkinElmer Lambda 25 UV/VIS spectrophotometer (PerkinElmer). ¹Hand ¹³C-NMR spectra: Bruker DRX 700 spectrometers (Bruker, Rheinstetten, Germany). ESI-MS: Finnigan MAT TSO-7000 triple stage quadrupole mass spectrometer (ThermoFinnigan, Bremen, Germany). HR-ESI-MS: LTQ Orbitrap mass spectrometer (Thermo Fisher, Waltham, MA, USA).

Plant Material

The aerial parts of *Periploca aphylla* were collected in March 2008 from Oyoun village located near Al-Baha, Saudi Arabia. The plant was identified by Dr. *Mohamed Yousef*, Prof. of Pharmacognosy, College of Pharmacy, King Saud University, Saudi Arabia. A voucher specimen (Pa-3-2008) was deposited at the herbarium of the Department.

Extraction and Isolation

The air-dried powdered aerial parts (1 kg) were extracted with MeOH $(2 \times 31, each)$ using Soxhlet apparatus (Cat. No: 80068-156, Chemglass) for 8 h at r.t. The combined extracts were concentrated under reduced pressure to afford a dark green residue (18.0 g) which was suspended in dist. H_2O (250 ml) then partitioned between hexane $(3 \times 500 \text{ ml})$, AcOEt $(3 \times 500 \text{ ml})$, and BuOH $(3 \times 500 \text{ ml})$, successively. Each fraction was concentrated to give hexane (2.3 g), AcOEt (4.9 g), BuOH (2.1 g), and aqueous (7.8 g). The AcOEt fraction (4.9 g) was subjected to VLC using CHCl₃/MeOH gradient, to afford six subfractions: PE-1 to PE-6. Subfraction PE-1 (0.61 g) was chromatographed over SiO₂ column (100 g \times 50 \times 2 cm) using hexane/AcOEt gradients to give 1 (10.3 mg, colorless oil). Subfraction PE-2 (0.53 g) was similarly treated as subfraction *PE-1* to give 2 (4.1 mg, white amorphous powder). SiO₂ CC of subfraction *PE-4* (0.51 g; 100 g \times 50 \times 2 cm) using CHCl₃/MeOH gradients yielded 3 (11.8 mg, yellow amorphous powder) and 4 (9.6 mg, yellow amorphous powder).

Subfraction *PE-5* (0.81 g) was chromatographed over *Sepha*dex *LH-20* column (100 g × 50 × 3 cm) using MeOH as an eluent to give two subfractions: *PE-5A* (175 mg) and *PE-5B* (320 mg). Subfraction *PE-5B* was subjected to *RP*₁₈ column (100 g × 50 × 2 cm) using MeOH/H₂O gradient to afford **5** (16 mg, yellow amorphous powder).

Periplocain A (= (1*S*,2*R*,3*S*)-1,2,3,4-Tetrahydro-2,3-bis (hydroxymethyl)-6,7-dimethoxy-1-naphthalenyl β-D-Glucopyranoside; 2). White amorphous powder. [α]_D = -76.6 (*c* = 0.5, MeOH). UV (MeOH): 242 (3.14), 276 (2.34). IR (KBr): 3415, 2978, 1595, 1515. NMR ((D₆)DMSO, 700 and 176 MHz): see *Table*. HR-ESI-MS: 431.1915 ([M+H]⁺, C₂₀H₃₁O⁺₁₀; calc. 431.1917).

REFERENCES

- Najeeb-ur-Rehman, A. Khan, U. Fatima, M. Akram, N. Al-Musayeib, S. Al-Massarani, A. El-Gamal, A.-H. Gilani, *Int. J. Pharmacol.* 2013, 9, 190.
- [2] S. A. Chaudhary, A. A. Al-Jowaid, 'Vegetation of the Kingdom of Saudi Arabia', p. 218, National Agriculture and Water Research Center, Riyadh, Saudi Arabia, 1999, p. 218.
- [3] A. Mahmood, A. Mahmood, A. Tabassum, J. App. Pharm. 2011, 2, 2012.
- [4] M. A. Al-Yahya, I. A. Al-Meshal, J. S. Mossa, A. A. Al-Badr, M. Tariq, 'Saudi Plants: A Phytochemical and Biological Approach', King Abdulazia City for Science and Technology, Riyadh, Saudi Arabia, 1990, p. 317.
- [5] S. R. Baquar, 'Medicinal and Poisonous Plants of Pakistan', Karachi, Pakistan, 1989, p. 325.
- [6] H. I. A. Soliman, F. A. Ebad, M. M. Abdalla, W. M. Abed Elmaksood, *Arab J. Biotech.* 2011, 14, 235.
- [7] R. A. Khan, N. A. Khan, F. U. Khan, M. Ahmed, A. S. Shah, M. R. Khan, M. S. Shah, *Afr. J. Pharm. Pharmacol.* **2012**, *6*, 3130.
- [8] A. Rauf, N. Muhammad, A. Khan, N. Uddin, M. Atif, World. Appl. Sci. J. 2012, 20, 540.
- [9] J. Iqbal, S. Zaib, U. Farooq, A. Khan, I. Bibi, S. Suleman, *ISRN Pharmacol.* 2012, doi.org/10.5402/2012/563267.
- [10] N. M. Al-Musayeib, R. A. Mothana, S. Al-Massarani, A. Matheeussen, P. Cos, L. Maes, *Molecules* 2012, 17, 11379.
- [11] R. A. Khan, M. Ahmad, A. S. Shah, F. U. Khan, N. S. Khan, M. S. Shah, M. R. Khan, *Afr. J. Biotech.* **2012**, *11*, 11575.
- [12] G. Mustafa, E. Anis, S. Ahmed, I. Anis, H. Ahmed, A. Malik, S. Shahzad-ul-Hassan, M. I. Choudhary, J. Nat. Prod. 2000, 63, 881.
- [13] A. Malik, N. Riaz, H. R. Nawaz, H. Ahmad, S. A. Nawaz, M. I. Choudhary, J. Nat. Prod. 2004, 67, 1450.
- [14] A. Rahman, N. Riaz, H. Ahmad, Z. Ahmad, A. Malik, J. Chem. Soc. Pak. 2003, 25, 257.
- [15] S. R. M. Ibrahim, G. A. Mohamed, *Phytochem. Rev.* 2015, doi:10.1007/s11101-015-9413.
- [16] R. Chaudhery, D. Ahmed, I. Liaqat, P. Dar, M. Shaban, J. Med. Plant Res. 2014, 8, 1014.
- [17] B. R. Kim, G. H. Sung, K. E. Ryu, J.-J. Kim, Y.-J. Yoon, Bull. Korean Chem. Soc. 2013, 34, 3410.
- [18] T. Shahzadi, M. A. Abbasi, Aziz-ur-Rehman, T. Riaz, K. M. Khan, V. U. Ahmad, M. Ashraf, B. Hussain, M. Ajaib, J. Chem. Soc. Pak. 2012, 34, 442.
- [19] J. B. Harborne, "The Flavonoids', Advances in Research Since 1980', Chapman & Hall, New York, 1988.
- [20] N. M. Al-Musayeib, G. A. Mohamed, S. R. M. Ibrahim, S. A. Ross, *Med. Chem. Res.* 2013, 22, 5297.

Received December 15, 2015 Accepted March 15, 2016